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Introduction 

The size of a helmet-mounted display's (HMD's) field-of-view (FOV) is the size of the visual 
world available to an Army helicopter pilot via an imaging sensor. A binocular partial overlap 
HMD is slated for use with the Army' s new RAH-66 Comanche helicopter.   Currently, 
monocular HMDs are used in the Army' s AH-64 Apache helicopter. The Comanche' s HMD 
will present the binocular FOV in a partial overlap configuration rather than a full overlap 
configuration. In the full overlap configuration, the images presented to each eye, the monocular 
fields, are identical views of the visual world where the FOV consists of a single binocular 
region. In the partial overlap configuration, the FOV consists of the central binocular overlap 
region seen by both eyes, and two flanking monocular regions, each seen by one eye. How 
effective is this visual interface? We briefly describe the relevant differences between normal 
unaided vision and vision with a binocular HMD and briefly review the visual effects of 
binocular HMDs and how visual performance might be affected. Our concern is how these 
displays might affect the visual tasks required of military pilots. Our study compares visual 
search performance under different HMD FOV configurations. 

Binocular human vision normally consists of an overlapping divergent FOV where the overall 
horizontal FOV is approximately 200 degrees of visual angle (when viewed straight ahead), with 
each eye's monocular field around 120 degrees of visual angle. The two monocular fields 
combine to produce an FOV consisting of three regions.   The central binocular region, which 
both eyes can see, is approximately 120 degrees, and the two flanking monocular regions, each 
seen exclusively by a single eye, are each approximately 40 degrees. The FOV is described as 
divergent because the right eye sees the monocular region to the right of the common binocular 
region and the left eye sees the monocular region to the left of this region (Figures 1 and 2). 

The size of the monocular fields an HMD can present to each eye is limited by current 
technology due to the weight and size of the HMD oculars and the need for adequate eye 
clearance. Therefore, the size of the FOV in a full overlap configuration is limited to the size of 
each monocular field. Small FOVs can be detrimental to the visual tasks required of military 
pilots (Kenyon and Kneller, 1993; Osgood and Wells, 1991; Wells, Venturino, and Osgood, 
1989; Wolpert, 1990; Jennings and Dion, 1997; Jennings et al., 1997; and Klymenko et al.,' 
1999).   The Comanche program has settled on the partial overlap method to increase the FOV. 
Relative to full overlap, the horizontal FOV of HMDs can be increased, without increasing the 
size of the monocular fields, by combining them so that they binocularly overlap only partially 
(Melzer and Moffitt, 1989, 1991). In the HMD's FOV, this artificial partial overlap 
configuration can be either divergent as in normal vision, or it can be convergent. In the 
divergent partial overlap configuration, as in normal vision, the right eye will see the monocular 
region to the right of the binocular overlap region and the left eye will see the monocular region 
to the left. The resulting visual regions will be smaller than they are in normal vision because 
the HMD' s monocular fields are smaller than each eye' s normal view. In the convergent partial 
overlap configuration, contrary to the divergent partial overlap configuration, the right eye will 
see the monocular region to the left of the binocular overlap region and the left eye will see the 
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Figure 1. In normal unaided vision, the two monocular fields are partially overlapped producing 
a divergent FOV consisting of three regions, the central binocular overlap region and 
two flanking monocular regions. 

monocular region to the right. In a full overlap configuration where both monocular fields 
display the same central binocular region, the FOV is one binocular region the size of a 
monocular field. 

Thus, to overcome the limited size of the monocular fields, the partial overlap method 
increases the available FOV in the HMD without increasing the size and weight of the HMD or 
losing central resolution. However, the partial overlap method has been a source of ongoing 
concern (Alam et al., 1992; Edgar et al., 1991; Kruk and Longridge, 1984; Landau, 1990; 
Moffitt, 1989, 1991; and Moffitt and Melzer, 1991). One consequence of partial overlap is the 
effect known as luning (Figure 2), a subjective darkening of the monocular regions near the 
binocular overlap border (Moffitt, 1989; Klymenko et al., 1994b). Luning can lower the 
visibility of stimuli as well as distract the pilot using the HMD. Partial overlap can also cause 
visual fragmentation, which refers to the segmented phenomenal appearance of the display as 
three distinct regions instead of the perceptually unitary FOV one should see (Klymenko et al., 
1994a). Luning and fragmentation tend to be greater in divergent than in convergent displays 
(Klymenko et al., 1994a,b). This is because the partial overlap FOV of the HMD is smaller than 
the FOV in normal unobstructed vision. This results in both the central binocular region and the 
two flanking monocular regions falling into a visual area that is normally completely binocular. 
Visual processes such as binocular rivalry and dichoptic competition in the monocular regions 
can then be experienced as luning and visual fragmentation of the FOV. (See discussions in 



Figure 2. Pilot's view of visual world in an HMD with a partially binocular overlapped FOV. 
Note the exaggerated presence of luning at the overlap borders. 

Klymenko et al., 1994a,b,c). In addition to these phenomenal effects, targets near threshold are 
harder to see in the monocular regions of partial overlap FOVs (Klymenko et al, 1994c). The 
visibility of targets, and the visual world in general, seen in the HMD' s FOV is, of course, of 
paramount importance to military aviators. Though these effects were relatively small in terms 
of the contrast needed to identify the target, they were, nevertheless, clear cut and systematic. 
One reason for the reduced target visibility in partial overlap FOVs is the dichoptic competition 
between the two eyes due to conflicting visual information. This includes a general visual 
system effect of binocular rivalry (and alternating monocular dominance) between the two eyes 
and a specific stimulus effect due to the binocular overlap border in the display. Another reason 
is the general reduction in sensitivity due to the binocular combination of the two disparate 
images in the monocular regions. For more extended discussions, see Klymenko et al. 
(1994a,b,c). The question is: Are these perceptual effects likely to affect general visual 
performance? 

In Klymenko et al. (1999), we found that visual performance, as measured by response time 
to target acquisition, and accuracy of target acquisition is, in general, poorer in the monocular 
regions of partial overlap FOVs, more so in the divergent than the convergent partial overlap 
FOV. In that study, target positions were constant. The current study, incorporating a number of 
methodological changes, is a preliminary investigation of visual search performance where target 
locations are variable and the observer must scan the display to find the target. The study was 
designed to gain more understanding of the real world impact of FOV designs on general visual 



performance by using a visual search task under the psychological constraints experienced in 
aviation. These include time pressure, uncertainty of the specific target and of its location, and a 
randomly cluttered background. Observers needed to visually scan the FOV to search for the 
target.   Aviation is an attention-demanding (high mental workload) environment with a high rate 
of visual information throughput where visual inspection time is often limited and the eyes need 
to continually scan an FOV. This is a stimulus environment that often taxes the visual 
performance of the human perceiver. Under operational conditions, human performance may be 
compromised by the partial over    lap FOV design. The performance decrements with these 
HMDs may become critical in attention demanding environments such as military aviation. This 
study assesses the effects of these FOV configurations on visual performance under demanding 
viewing conditions. 

Visual search experiment 

In this exploratory study, the task was to search through a group of randomly located 
alphanumeric symbols and identify the target (one of five possible numbers) from among similar 
distractors (letters) in each trial display as quickly as possible. Response time and accuracy were 
the measures of visual performance.   The target could be any one of several numbers, and the 
distractors could each be any one of several letters. The task was to identify which number was 
present in each display. To make the task more difficult, the target number and distractor letters 
(collectively, the alphanumeric symbols), were randomly oriented, and unlike the previous study 
(Klymenko et al., 1999), their locations were randomized, rather then being in an array of fixed 
positions. Also, on half the trials, the alphanumerics were spatially blurred to test the effect of 
this factor. Each display contained random clutter in the form of randomly located ellipses of 
random size and orientation. Automated feedback was given to motivate subjects to perform at 
maximum capacity. Also, we used smooth temporal onsets for the symbols, as abrupt onsets 
make stimuli strong dichoptic competitors (Kaufman, 1963; 1964) and therefore could mask 
relevant differences among conditions. 

We had four general hypotheses: One, the FOV factor would effect target acquisition, with 
subjects exhibiting better performance in full overlap than in partial overlap FOVs and better 
performance in convergent partial overlap than divergent partial overlap FOVs.   Two, 
performance would depend on the target position in the FOV.   It was expected that performance 
would be worst in the monocular regions of partial overlap FOVs. Because of the change from 
the previous study, we eliminated response bias as a factor, therefore performance at different 
positions is now directly comparable. Three, we conjectured that blurred targets might cause 
poorer performance in monocular regions because blurring reduces a stimulus' strength in 
dichoptic competition (Kaufman, 1963,1964). Four, we assumed performance would improve 
over time. 

In this preliminary study, we looked at how the type of FOV, the position of a stimulus in the 
FOV and the spatial blurring of the stimulus affected visual performance, and how visual 
performance is maintained over time. The task was to visually search the FOV for a series of 
displays, and in each display, identify the target as quickly as possible without making errors. 



Method 

Subjects 

Twenty-one student army aviators, 20 males and 1 female, voluntarily took part in the 
experiment. This population had passed Class II flight physical vision tests. All had 20/20 
unaided or better Snellen acuity. The mean age was 26.5 (SD =2.8 ), ranging from 21 to 30. 
Two additional subjects were not included in these data because the testing was interrupted due 
to computer and equipment problems. 

Equipment 

The equipment consisted of three major components: a Hewlett-Packard HP-98731 Turbo- 
SRX computer graphics workstation used to generate the visual stimuli, a custom optical table 
configuration used to optically direct the visual stimuli from the workstation monitor to a pair of 
viewing binoculars, and a subject booth.   The booth was a light-proof enclosure behind the 
binoculars where the subject viewed the stimuli via the binoculars and responded via an HP 
response keypad, the "buttonbox." The HP-98731 Turbo-SRX computer graphics workstation 
consisted of a 19-inch color Trinitron monitor (1280 x 1024 pixels) for presenting visual stimuli 
and a computer for generating the stimuli and recording the responses. Connected to the 
workstation were the experimenter's terminal to allow the experimenter to run the experimental 
programs and monitor the progress of each experimental session, and the buttonbox to allow the 
subject to respond to the visual stimulus presentations. 

The optical table configuration consisted of a 4-foot x 6-foot optical table, with the 
workstation monitor mounted at one wide side of the table, and eight front-surfaced mirrors 
mounted on the table to direct the visual image-the optical train-to a pair of viewing binoculars 
mounted on the other wide side of the table (Figure 3). The mirrors allowed the independent 
presentation of two channels, one to each ocular of the binoculars, from the same monitor. 
Through the binoculars, the image on the top half of the monitor was seen by the left eye, and the 
image on the bottom half of the monitor was seen by the right eye. The 7x50 binoculars were 
mounted within a fixture which allowed the interpupillary distance (IPD) to be adjusted for each 
subject. Affixed on the front of the binoculars were auxiliary focusing lenses to focus the 
magnified image. A light baffle in front of the monitor between the two optical paths was 
positioned to prevent cross talk between the two image channels.   Optical convergence was 
adjusted for two meters. The focus was between one and two meters across the FOV to 
compensate for slight field aberrations in the binoculars and possible slight inducement of 
instrument myopia. The two mirrors, L4 and R4 in Figure 3, mounted directly in front of the 
binoculars, were movable to allow adjustments corresponding to the IPD settings of the 
binoculars. The images seen through each ocular of the binoculars were 50 degrees of visual 
angle corresponding to 1280 pixels. The spatial resolution of the display was 25.6 pixels per 
degree of visual angle as seen through the binoculars. The temporal resolution, or frame rate of 
the monitor, was 60 Hz noninterlaced. The luminance resolution was 256 driving levels. The 
driving level to luminance conversions are given below. The 7x50 binoculars have a vertex 



* Mirrors lilted -2.4" from vertical 

"  Mirrors tilted +2.4° from vertical 

Figure 3. Perspective and schematic illustrations of the optical table configuration consisting of 
the monitor, eight mirrors, focusing lenses, and binoculars. 



distance of 27 mm and an exit pupil diameter of 7.14 mm. The subject, within reach of the 
buttonbox, was seated at a chin rest in the light-proof subject booth in front of the binoculars. 
Except for the stimuli viewed through the binoculars, the subject was in darkness. 

Stimuli 

The stimuli consisted of a series of computer-generated displays, where each display was in 
one of three FOV configurations. Each FOV contained eight alphanumeric symbols, all sharp or 
all blurred, seven of which were letters and one a numerical digit, which was the target. The 
particular letters and the particular number, the position of the target, the vertical location of all 
symbols, and each symbol's orientation were randomized. Also, each FOV contained 6 small 
crosses for fusion locks and 60 randomly-sized and randomly-positioned ellipses (half light grey 
and half dark grey) for background clutter. For each trial, two seconds after the FOV appeared, 
the eight symbols slowly appeared, taking an additional 0.8 seconds to go from invisible to 
maximum visibility.   Stimulus details are given below, and shown in Figures 4-7. Stimulus 
luminance values displayed on the screen, in terms of the 0-255 digital driving levels, took on 
values between 0 (black, 0.01 fL) through 64 (dark grey, 1.33 fL), 128 (neutral grey, 6.65 fL) to 
192, (light grey, 16.81 fL). Half of the ellipses were light grey and half were dark grey. The 
FOV background was neutral grey. The area outside the FOV was black, as were the fusion 
locks. 

The original sharp symbols were predefined as black, and the blurred symbols were sharp 
symbols modified by the blurring algorithm which causes the luminance of a symbol's pixels 
(and neighboring pixels) to vary in a complex way with different pixels taking on different 
values. The resulting values were between the pixel's original pre-blurred (black) value and the 
values of the pixel' s local surround—some combination of black and neutral grey pixels.   Then 
the symbol values were modified by lookup tables before display in order to present a smooth 
temporal onset. In essence, what this did was to start off the symbols as invisible and then 
smoothly increase the contrast by making the symbol darker to a value where they were clearly 
visible. This is described in detail below. 

Fields-of-view 

The total FOV was a rectangular area, 32.8 degrees of visual angle horizontal (840 pixels) by 
10 degrees of visual angle vertical (256 pixels) (Figures 4-7).   The subjects saw the total FOV 
via the monocular fields presented to each eye. The monocular fields were each 23.4 degrees of 
visual angle horizontal (600 pixels) by the full vertical extent. The FOV configurations differed 
in how the two monocular fields overlapped, and consequently the total FOV presented to both 
eyes.   In the full overlap FOV configuration, each eye' s monocular field displayed the same 
central portion of the total FOV, so that the FOV seen by the subject was binocular and consisted 
of the central 23.4 degrees of the total FOV. In the divergent partial overlap FOV, the right 
eye's monocular field was the right-most 23.4 degrees and the left eye's monocular field was 
the left-most 23.4 degrees of the total FOV; therefore, the FOV seen by the subject consisted of a 
central binocular overlap region of 14.1 degrees and two flanking monocular regions, each of 
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Figure 4. FOV dimensions. Four target positions in degrees of visual angle from the center are 
shown on the right and four symmetrical positions are shown on the left. The top 
shows a partial overlap FOV and the bottom shows a full overlap FOV. 

9.4 degrees. In the convergent partial overlap FOV, the right eye's monocular field was instead 
the left-most 23.4 degrees and the left eye' s monocular field was the right-most 23.4 degrees of 
the total FOV. Again, the FOV seen by the subject consisted of a central binocular overlap 
region of 14.1 degrees and two flanking monocular regions, each of 9.4 degrees. In the divergent 
case, the right eye saw the flanking monocular region to the right and the left eye saw the 
flanking monocular region to the left, while in the convergent case these were reversed, that is, 
the left eye saw the right monocular region and the right eye saw the left region (Figure 4). 

In both partial overlap conditions, the FOV seen by the subject was the full 32.8 degrees of the 
total FOV. This FOV consisted of a 14.1 degree central binocular region and two flanking 9.4 
degree monocular regions, with each eye seeing the monocular regions as described. In the full 
overlap condition, the FOV seen by the subject was the central 23.4 degree portion of the total 
FOV. In the full overlap condition, the binocular region was larger than in the partial overlap 
conditions, while in the partial overlap conditions, an enlarged FOV is seen with a smaller 
binocular region. In all the conditions, the monocular fields were the same size. 

These FOVs were presented by drawing each eye's monocular field separately on the top and 
bottom halves of the monitor and directing the images to each eye's view through the binoculars 
via the optical table configuration. 

8 



Figure 5. Example of a total FOV with blurred symbols. Target is the numeral "4" indicated 
by an arrow. 

The subjects require similar stimuli common to both eyes to prevent disjunctive eye 
movements in order to binocularly fuse images properly and to avoid the image slippage which 
leads to the binocular overlap of inappropriate regions. To ensure proper binocular locking of 
the monocular fields and to provide a way to monitor binocular fusion, fusion locks were present 
in each display. These were six crosses, three in the upper center of the total FOV and three in 
the lower center. Subjects were told that they should see three crosses above and below the 
center of each display. If they saw more, then the images were not properly fused and they 
should tell the experimenter.   This did not occur. With the background clutter described below, 
there were ample binocular stimuli to prevent slippage. Each shaft of the crosses was 8 pixels 
long by 2 pixels wide. Center crosses were 25 pixels from the top and bottom of the FOV, and 
flanking crosses were located 44 pixels to the right and left of the center and 16 pixels from the 
top and bottom of the FOV (Figures 5-7). 

Alphanumeric symbols and targets 

In each display, one of eight alphanumeric symbols was the target number, and the remaining 
seven were nontarget letters. Alphanumeric symbols were all in "stick figure" font, or font 
number 1, predefined in the Hewlet-Packard Starbase computer graphics language. Letters were 
all capitals, and all alphanumeric symbols were originally defined within a 16 by 16 pixel 
symbol square (0.6 by 0.6 degrees of visual angle). Alphanumerics were initially defined as 0 
driving levels (black). The orientation of each symbol was randomized by rotating the symbol 



Figure 6. The total FOV divided into the three regions seen in the partial overlap displays, the 
central binocular overlap region and the two flanking monocular regions. The vertical 
lines were not present in the displays. The left monocular field consists of the left and 
central regions, and the right monocular field consists of the central and right regions. 
In the divergent FOVs, the left eye saw the left monocular field, and the right eye saw 
the right monocular field. In the convergent FOVs, the left eye instead saw the right 
monocular field, and the right eye saw the left monocular field. In this display the 
symbols are sharp. Target is the numeral "2" indicated by the arrow. 

randomly from 0 to 360 degrees. The blurred symbols were spatially blurred as follows. The 
original symbol square consisted of black symbol pixels and non-symbol pixels. The symbol 
pixels and adjacent non-symbol pixels were defined as the blur zone. This blur zone included 
any symbol pixel, that is a pixel that contained part of the alphanumeric symbol, and any non- 
symbol pixel that was adjacent to a symbol pixel, adjacency defined as the eight contact pixels. 
The pixels in the blur zone were then filtered by a 3 by 3 Gaussian kernel. This means that for 
each blur zone pixel, the old driving level was replaced by a new driving level, which was the 
weighed average of the old value and the driving levels of the eight pixels around it. The kernel 
weights were as follows where the central "12" represents the weight of the old driving level: 

1 4 1 
4 12 4 
14    1 

The symbol edges were softened by blurring the symbol into the FOV. The blurred symbols 
contained more pixels with smoother transitions between symbol and background. 

10 



Figure 7. A full overlap FOV where both monocular fields consist of the same central portion of 
the total FOV. The symbols are sharp. Target is the numeral "2" indicated by the 
arrow. 

All symbols, sharp and blurred, gradually appeared in the FOV to avoid sharp temporal onsets. 
This was implemented by passing the symbol (blurred or sharp) through a series of lookup table 
functions, one function for each frame of the temporal sequence. In the lookup table function, 
each original input driving level in the symbol was changed to an output displayed driving level. 
Cycling through the set of functions caused the original symbol' s luminance to change smoothly 
from invisible, where all the pixels were equal to the background of the FOV (128 driving levels) 
to clearly visible, which was 45 driving levels in the sharp symbols, and in the blurred symbols, 
the pixel values were based on the pixel values resulting from the original blurring. The 
temporal onset was done by the following lookup table equation: 

=  x * tan(angle)   - (128* tan(angle)) + 128, 

where x = input pixel driving level; y = output pixel driving level; and angle = 0 to 30 
degrees in steps of 1.25 degrees. 

Angle represents the slope of the input-output lookup table function which changed every two 
frames. At 45 degrees, all displayed driving levels (y) would be equal to original input driving 
levels (x), zero in the case of the sharp symbols and the original blurred values in the case of the 
blurred symbols.   At 0 degrees, all output driving levels (y) equaled 128, where the entire 
symbol was the same driving level as the FOV background and therefore invisible. Forty-eight 
frames, taking 0.8 seconds, presented the transition from invisible (0 degrees) to fully visible (30 
degrees) by incrementing from 0 to 30 degrees in steps of 1.25 degrees with 2 frames per step. 
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The symbol positions in terras of degrees of visual angle from the center of the symbol to the 
center of the FOV were located as shown in Figure 4. Four positions were to the right of center, 
and four symmetrical positions were to the left of center. Horizontally, the symbols were located 
as follows. The positions numbered 1 were 123 pixels (4.8 degrees of visual angle) to the right 
and left of center. The positions numbered 2 were 167 pixels (6.5 degrees of visual angle) to the 
right and left of center. Positions numbered 3 were 193 pixels (7.5 degrees of visual angle) to 
the right and left of center, and positions numbered 4 were 237 pixels (9.3 degrees of visual 
angle) to the left and right of center. The edge of the symbols in positions 2 and 3 were two 
pixels away from the adjacent binocular overlap border. The position of each individual symbol 
was vertically randomized; it could be located with equal probability vertically anywhere within 
the central 110 pixels high region (4.3 degrees of visual angle). 

Background clutter 

For clutter, each display contained 30 dark grey and 30 light grey ellipses, each randomly 
oriented, randomly sized, and randomly located within the total FOV. The center of each ellipse 
could, with equal probability, be located on any pixel within the total FOV with the following 
stipulation. If the random placement procedure located the ellipse on or near a symbol, that is if 
they overlapped, then the ellipse was instead placed in a new random location. For this purpose, 
the symbol was defined as the original 16x16 pixel square and the ellipse region was defined as 
a square around the ellipse center with sides equal to the major axis of the ellipse. This was to 
avoid contaminating the results with extremely difficult to see alphanumerics on top of ellipses. 
The orientation of each ellipse could, with equal probability, be anywhere from 0 to 180 degrees. 
Ellipse size was randomized by sizing each of the two axes of each ellipse with equal probability 
anywhere from 1 to 44 pixels in length. Ellipses were alternatively light and dark grey, with 
later ellipses drawn over former ellipses. 

Design and data analysis 

Each trial consisted of a unique display to which the subject responded. In the experiment, 
378 trials were presented in 7 blocks, where each block contained 3 FOVs, presented in random 
order.   There were 18 trials in each FOV, where unknown to the subject, the first two of these 
were merely to allow the subject to acclimate to the FOV and the responses not recorded. The 
acclimation trial displays were random with respect to target type (sharp or blurred), target 
position and target number. The remaining 16 trials consisted of each of the two target types, 
once in each of the eight positions presented in random order.   For each display, the number of 
the target symbol was randomly 1, 2 3, 4 or 5, and each of the seven non-target letters was 
randomly one of twenty-two letters (the alphabet minus the letters B, E, I and S). 

The experimental design for analysis was a 6 (block) x 3 (FOV) x 2 (target type) x 4 (position) 
repeated measures analysis of variance (ANOVA) with 144 data points for each subject for each 
of three response measures. The first of the seven blocks was considered practice and not 
included in the data analysis. Also, only the four positions to the right of center were included in 
the data analysis. Originally, we had intended to include all eight positions; however, we found 
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that with some slight movement of the head for some IPDs, it was possible in some cases for the 
far left symbol to fall out of the left ocular's sweet spot, i.e., become slightly blurred.   In a visual 
search experiment subjects might inadvertently move their heads when scanning the visual field, 
so we eliminated some possible confounding effects of this blurring by limiting the data analysis 
to the four right-most positions. 

The three response measures were response time (RT), number of errors, and percent errorless 
target acquisition. RT measures the time to hit the correct key indicating the correct target, 
irrespective of the number of errors. The alphanumerics appeared gradually in each FOV, taking 
0.8 seconds to go from completely invisible to fully visible. The response times were measured 
from the halfway point, 0.4 seconds, in terms of the number of frames, which were updated 
every sixtieth of a second. The number of errors measures the number of wrongly acquired 
targets on each trial before acquiring the correct target, and it could vary from a minimum of 
zero to a maximum of four, as there were five possible answers.    Percent errorless target 
acquisition measures the percentage of times subjects made no errors before target acquisition. 

Procedure 

Subjects were given instructions and gave informed consent for participation in the study. 
Each subject' s interpupillary distance was measured and the equipment adjusted accordingly. 
The mean interpupillary distance for the 21 subjects was 61.3 mm (SD = 3.9). Subjects adjusted 
the chin-rest, keypad, and height of the seat for comfortable viewing of the display through the 
binoculars. To ensure there was no visual clipping of the FOV, or vignetting, for the area which 
would contain the experimental stimuli, a binocular display containing three widely spaced 
circles was shown. It contained the same optical convergence as the stimulus displays. The 
three circles were superimposed over a purple background with a white grid. There was a black 
circle in the center of the display, a blue circle to the right of center, and a yellow circle to the 
left of center. The black circle was 24 pixels in diameter and the outer two circles were 34 pixels 
in diameter. The outer edges of the outer circles were 668 pixels (26.1 degrees) distance from 
each other. The subjects were asked if they could see, without moving their head position, the 
entire yellow circle, the entire blue circle, and the grid surrounding each circle clearly and 
without vignetting when they visually scanned across the display. 

In the experiment, subjects viewed a series of stimulus displays, each with eight alphanumeric 
symbols.   The subjects were told the following: There would be eight symbols in each display, 
one of which was the target number. The symbols could be blurred or sharp and would be 
randomly oriented and randomly located. Their task for each display was to identify the number 
of the target, one to five, as quickly as possible, hit the appropriate key on the keypad, and avoid 
mistakes.   Subjects could pause only during the feedback displays or "continue" displays. Five 
response keys in a row were assigned to each number. The middle key had a bump, so subjects 
could feel them in the dark. 

The row of four keys above the response keys were the "next" keys, which were for 
continuing past the feedback displays, or the displays with the word "continue." A display with 
the word "continue" preceded each new FOV.   To induce the need for rapid response, as well as 
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the need to maintain accuracy, subjects were told to imagine that the target, the number, was the 
enemy which would shoot them if they did not shoot it first, and the nontargets, the letters, were 
friendlies. Feedback displays were presented throughout the experiment to reinforce the 
subject' s motivation to maintain maximum performance. 

There were two types of feedback displays. First, seven times during the experiment, at the 
end of each block of trials (with three FOVs), a percentage display came on. This display 
showed a number with a percent sign representing the percentage of trials of the fifty-four trials 
of the block that were acquired on the first try without any errors. This percentage appeared on 
the screen to motivate the subject to maintain accuracy and avoid random guessing. Second, 
after every seven trails, two numbers appeared in a feedback display. The top number, followed 
by the word 'sec.,' was the average response time in seconds to the third decimal place that the 
target was acquired for the last seven trials, and the bottom number, followed by an 'X,' was the 
number of targets out of the last seven where there were errors before target acquisition. If there 
were no errors in the preceding seven trials, the word "OK" appeared instead.   Seven displays 
was used as the average because it is not evenly divisible into the number of trials per FOV, so 
subjects would not be inclined to monitor their performance with respect to FOV type. The 
continue and the feedback displays remained on until a next key was hit. Subjects were told that 
for these displays they could pause if they wanted to and then initiate the next series by hitting a 
next key when they were ready. 

Once the series of displays started, for each display, the image would remain on until the 
target was hit. If an error was made, a transient asterisk appeared in the center of the display and 
remained on as long as a wrong key was depressed.   When the target number was identified by 
hitting the correct key, a cross appeared on the target, then the screen went blank and 1 second 
later a new FOV appeared, and 2 seconds later the targets began increasing contrast, reaching 
full visibility 0.8 seconds later. 

In the experimental session, two display programs were run; one for the training and one for 
the experimental phase.   The first ran the training phase to familiarize the subject with the task. 
It had FOVs with fewer trials (6 per FOV instead of 18) and, unlike the experimental phase, the 
symbol factors of blur and position of target were totally random, that is, random with 
replacement. No data were recorded.   Subjects ran at least one block, and as many additional 
trials as they thought they needed, to fully familiarize themselves with the task and stimuli. All 
subjects ran between one and two blocks in this phase.   Three minutes later, in the experimental 
phase, the second program ran seven blocks where the first block was considered practice. The 
blur and position factors of the acclimation trials, unlike the remaining 16 trials, were totally 
random.   In the remaining 16 trials for which the data were recorded, the blur and position 
factors were random without replacement, that is, each target type-position combination 
appeared once. The number of the target in each trial was totally random. Subjects were not told 
these details; to them, all the trials were equally important and all stimulus factors were random. 
There were 378 trials for each subject. The 144 nonacclimation trials of the right-most four 
positions of the last six blocks were included in the analysis and results reported here. 
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Results and conclusions 

Table 1 shows the ANOVA tests for RTs. None of the interactions were significant. Three of 
the four main effects were significant. There was a significant block effect with RTs tending to 
get faster over time as shown in Figure 8, which gives the RTs over blocks for the practice block 
and the six test blocks for each of the three FOVs. There is some improvement over time, as one 
might expect, and, there is no interaction between the block factor and any other factor. The 
noninteraction between the block and the FOV factor is indicated by the rough parallelism of the 
three lines. 

There was a significant main effect for FOV. Mean RT to targets in the three FOVs were as 
follows: divergent overlap FOV, 1.97 seconds; convergent overlap FOV, 1.93 seconds; and full 
overlap FOV, 1.74 seconds. The divergent FOV RT was significantly slower than the full 
overlap FOV, F(l,20) = 25.03, p < .00007; and the convergent FOV was significantly slower 
than the full overlap FOV, F(l,20) - 20.18, p < .0002; but the divergent FOV was not 
significantly slower than the convergent FOV, F(l,20) = 0.77, p < .39. 

There was no significant main effect of target blurring. The means for blurred and non- 
blurred targets, respectively, were 1.88 and 1.87 seconds. Although the differing appearances of 
the two types of targets were apparent, the measured responses to them were virtually 
indistinguishable. 

There was a significant main effect for position with slower RTs for targets farther away from 
the center.   The means for positions 1 through 4, respectively, were as follows: 1.71,1.73,1.88 
and 2.19 seconds. Figure 9 shows the RTs for each position for each of the three FOVs. 

Table 2 shows the ANOVA tests for number of errors.   None of the statistical tests were 
significant. The three FOVs over position are graphed in Figure 10. 

Table 3 shows the ANOVA tests for percent errorless target acquisition.   None of the tests 
were significant. The three FOVs over position are graphed in Figure 11. Here the perfect score 
of 100 percent is at the bottom of the graph to keep it in line with the other graphs where 
performance decrements are higher on the graph. 

The two accuracy measures, in conjunction with the RT measure, show that there was no 
systematic speed-accuracy tradeoff, that is, no pattern of substituting speed for accuracy, or 
accuracy for speed, differentially across conditions. 
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Table 1. 
RT ANOVAs. 

Effect Test F p-level 

1.   Block F (5,100) 4.58 .0008** 

2.   FOV F(2,40) 14.34 .00002 ** 

3.   Target F(l,20) 0.07 .80 

4.   Position F(3,60) 31.64 < .000001 ** 

5.   Block x FOV F (10,200) 0.93 .51 

6.  Block x Target F (5,100) 1.17 .33 

7.   FOVx Target F (2,40) 1.58 .22 

8.   Block x Position F (15,300) 0.64 .84 

9.   FOVx Position F (6,120) 1.92 .08 

10. Target x Position F(3,60) 0.05 .98 

11. BlockxFOVx Target F (10,200) 1.13 .34 

12. Block x FOV x Position F (30,600) 1.12 .31 

13. Block x Target x Position F (15,300) 1.51 .10 

14. FOV x Target x Position F (6,120) 1-01 .42 

15. Block x FOV x Target x Position F (30,600) 0.98 .50                                 1 
** p<.01. 

In our previous study (Klymenko et al., 1999), using response time and accuracy of target 
acquisition under different FOVs in a different design, position was confounded with keystroke 
movements; i.e., subjects responded to the position of the target with a key associated with that 
position.   In the current study, each key was associated with a particular target number, rather 
than position, thereby eliminating response bias as a factor.   Differences between positions here 
can therefore be attributed solely to the stimulus (visual) differences between positions. 

One can see that, overall, target acquisition is fastest in the full overlap FOV, and slower in the 
two partial overlap FOV conditions. 
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Figure 8. Mean RT to acquire target (FOV x Block). P is the practice block. 

As described previously, the positions differ categorically from each other in that positions 3 
and 4 are monocular in the convergent and divergent FOVs and binocular in the full overlap 
FOV, and positions 1 and 2 binocular in all cases. The graphed data in Figures 9-11 do not 
show any clear (statistically significant) pattern of changes across the boundary between 
positions 2 and 3 for the overlap FOVs. Distance appears to be the important factor with these 
suprathreshold stimuli. Separating distance and the effect of the overlap border requires 
additional research and more statistical power. Because the severest luning in the monocular 
border regions is just outside the binocular border, one might have expected peaks in the RTs for 
position 3. This may not have occurred here, possibly due to the attenuating effect on luning of 
the background clutter. 

Although not all the differences were significant, overall performance as measured by RT and 
accuracy tended to be best in the full overlap FOVs and worst in the partial overlap FOVs. 
There was no effect of target type. We had expected that since sharp targets are better dichoptic 
competitors, they would have shown superior performance. However, it may be that the clutter 
in our displays outweighed this factor. That is, FOV articulation caused by the contours from the 
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Figure 9. Mean RT to acquire target (FOV x Position). 

clutter serves to lock in the correct competing image, and lock out the dark competing image 
from the incorrect eye, so that it does not come through in the binocular percept of the total FOV. 
Moffitt (1989) suggested that contours that occur in an FOV displaying a natural scene 
might eliminate liming and, presumably, the other detrimental effects such as the reduced 
visibility of targets that occur in partial binocular overlap displays. This occurs because the 
added contours bias the binocular rivalry in favor of the monocular image that contains the 
contours as opposed to the incorrect image which only contains a black featureless background 
and one contour, the binocular border (e.g., see Arditi, 1986; Anderson and Nakayama, 1994; 
Fox and Check, 1968,1972; Fox, 1991; and Norman, Norman and Biotta, 2000). One would 
need to test visual search of targets in a clear uncluttered FOV to determine this. Performance, 
as expected, tends to get better over time as indicated by the block main effect and be better for 
positions closer to the center of the FOV as indicated by the position main effect. How much of 
an effect is due to the binocular border per se remains to be seen. Further research is needed to 
clarify these issues. In summary, on average, performance tended to be best in the full overlap 
FOV and poorest in the partial overlap FOVs, and the RT performance data were not 
disconfirmed by the two accuracy measures (number of errors and percent errorless target 
acquisition). 
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Table 2. 
Number of errors ANOVAs. 

Effect Test F p-level 

1.   Block F (5,100) 0.18 .97 

2.   FOV F(2,40) 0.15 .86 

3.   Target F(l,20) 3.49 .08 

4.   Position F(3,60) 1.25 .30 

5.   Block x FOV F (10,200) 0.73. .69 

6.   Block x Target F (5,100) 0.73 .60 

7.   FOVx Target F(2,40) 0.03 .97 

8.   Block x Position F (15,300) 1.03 .42 

9.   FOVx Position F (6,120) 0.74 .62 

10. Target x Position F (3,60) 0.85 .47 

11. Block x FOV x Target F (10,200) 0.49 .90 

12. Block x FOV x Position F (30,600) 1.34 .11 

13. Block x Target x Position F (15,300) 0.98 .48 

14. FOV x Target x Position F (6,120) 0.60 .73 

15. Block x FOV x Target x Position F (30,600) 0.92 .60 
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Table 3. 
Percent errorless target acquisition ANOVAs. 

Effect Test F p-level 

1.  Block F (5,100) 0.17 .97 

2.  FOV F(2,40) 0.65 .53 

3.  Target F(l,20) 1.61 .22 

4.   Position F (3,60) 1.39 .25 

5.   Block x FOV F (10,200) 0.70 .72 

6.  Block x Target F (5,100) 1.11 .36 

7.  FOVx Target F(2,40) 0.39 .68 

8.   Block x Position F (15,300) 0.80 .67 

9.  FOVx Position F (6,120) 0.61 .72 

10. Target x Position F(3,60) 0.81 .50 

11.BlockxFOVx Target F (10,200) 0.67 .75 

12. Block x FOV x Position F (30,600) 1.19 .23 

13. Block x Target x Position F (15,300) 1.42 .14 

14.FOVx TargetxPosition F (6,120) 0.86 .53 

15. Block x FOV x Target x Position F (30,600) 0.88 .65 
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